Inexact descent methods for elastic parameter optimization
نویسندگان
چکیده
منابع مشابه
Descent Methods for Tuning Parameter Refinement
This paper addresses multidimensional tuning parameter selection in the context of “train-validate-test” and K-fold cross validation. A coarse grid search over tuning parameter space is used to initialize a descent method which then jointly optimizes over variables and tuning parameters. We study four regularized regression methods and develop the update equations for the corresponding descent ...
متن کاملDescent methods for optimization on homogeneous manifolds
preprint numerics no. 1/2007 norwegian university of science and technology trondheim, norway 1 In this article we present a framework for line search methods for optimization on smooth homogeneous manifolds, with particular emphasis to the Lie group of real orthogonal matrices. We propose strategies of univariate descent (UVD) methods. The advantages of this approach are that the optimization ...
متن کاملInexact Alternating Direction Methods of Multipliers for Separable Convex Optimization
Abstract. Inexact alternating direction multiplier methods (ADMMs) are developed for solving general separable convex optimization problems with a linear constraint and with an objective that is the sum of smooth and nonsmooth terms. The approach involves linearized subproblems, a back substitution step, and either gradient or accelerated gradient techniques. Global convergence is established. ...
متن کاملAdaptive Multilevel Inexact SQP Methods for PDE-Constrained Optimization
We present a class of inexact adaptive multilevel trust-region SQP-methods for the efficient solution of optimization problems governed by nonlinear partial differential equations. The algorithm starts with a coarse discretization of the underlying optimization problem and provides during the optimization process 1) implementable criteria for an adaptive refinement strategy of the current discr...
متن کاملExact and Inexact Subsampled Newton Methods for Optimization
The paper studies the solution of stochastic optimization problems in which approximations to the gradient and Hessian are obtained through subsampling. We first consider Newton-like methods that employ these approximations and discuss how to coordinate the accuracy in the gradient and Hessian to yield a superlinear rate of convergence in expectation. The second part of the paper analyzes an in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Graphics
سال: 2019
ISSN: 0730-0301,1557-7368
DOI: 10.1145/3272127.3275021